This function is used to summarise the missing variable, missing pattern identification and classifying the columns based on the pattern of missing values.
misspattern(data, mfeature, drop = 0.99, print = FALSE)
data | [data.frame | Required] data set with missing values |
---|---|
mfeature | [character | Required] only missing variable name |
drop | [numeric | optional] drop variable percentage. Example, if drop = 0.9, function will automatically drop 90per missing columns from the data set |
[character | optional] defualt print is FALSE |
final variable list, summary of missing data analysis
## Sample iris data mdata <- iris mobject <- misspattern(mdata, mfeature = c("Sepal.Length", "Petal.Length"), drop = 0.99, print = F)