this function can be used for autoMAR objects to generate the variable for missing variable not completely at random

predictAutoMAR(x, data, mar_var = NULL)

Arguments

x

[autoMAR object | Required] autoMAR object for which prediction is desired

data

[data.frame | Required] prediction data set to prepare the autoMAR outcomes

mar_var

[character list | Optional] list of predefined mar variables

Value

flagged variables for missing not completely at random variable

Examples

## Missing at random features train <- heart[1 : 199, ] test <- heart[200 : 300, ] marobj <- autoMAR (train, aucv = 0.9, strataname = NULL, stratasize = NULL, mar_method = "glm")
#> less than or equal to one missing value coloumn found in the dataframe
## print summary in console testobj <- predictAutoMAR(marobj, test)
#> Not found any MAR variables, please check you autoMAR object auc.features